If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+36=81
We move all terms to the left:
x^2+36-(81)=0
We add all the numbers together, and all the variables
x^2-45=0
a = 1; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·1·(-45)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*1}=\frac{0-6\sqrt{5}}{2} =-\frac{6\sqrt{5}}{2} =-3\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*1}=\frac{0+6\sqrt{5}}{2} =\frac{6\sqrt{5}}{2} =3\sqrt{5} $
| 3n=10+2 | | 7(2)x=-38x+51x-5-5 | | -29-16x=23-18x | | x8+10=5 | | 8–4r=-2r-10 | | 8–4r=-2r-10 | | k-39=8 | | z-6+4z-9+8z=11 | | 3=9z+4 | | 6+2x+6x=102 | | -30=x+105 | | 3x+3+x+2=x+5 | | -9x-130=-15x+50 | | F(b+3)=0.5(4)^b+3 | | 9w+5w+9+4=9w+5w+3 | | -x+2-5=-1 | | N+(n+6)=4n | | -54=2x+5x+9 | | G(b)=0.5(4)^b | | |51-x|=40 | | 12+r=5 | | F(2+h)=6h-3 | | N+(2+3n)=18 | | -56+10x=43 | | 2=5s+3 | | F(b)=6b-3 | | 36=-4p | | 6-3+4x+1=2x+9 | | 3g+2(-6=5g)=1-g | | -5/2x-6/5=1/2x-7 | | 2x+x39=180 | | F(2a)=6a-3 |